The Mediterranean Region is facing growing challenges to ensure food and water supply as countries experience increasing demand and decreasing availability of natural resources. The nexus approach aims at managing and leveraging synergies across sectors with an efficient and integrated management of the Water, Energy, Food, and Ecosystems Nexus (WEFE).

BONEX objectives are to provide practical and adapted tools, examine concrete and context-adapted technological innovations, enhance policies and governance and facilitate WEFE Nexus practical implementation that balances the social, economic, and ecological trade-offs.

The project aims at producing a novel, transdisciplinary, diagnostic WEFE Bridging Framework, which combines methods in a context-specific manner and going beyond disciplinary silos. The diagnostic tools supporting the framework will be developed and tested in seven selected demonstration projects in the region which pilot innovative technologies (agrivoltaics, wastewater reuse systems, etc.).

As a result, BONEX will provide policymakers and practitioners with an interactive decision-making tool to evaluate trade-offs, synergies, and nexus solutions approaches in a transdisciplinary manner. Further, it will produce valuable experiences with tailoring innovative WEFE Nexus technologies that provides new business opportunities. The WEFE nexus approach is required to implement sustainable agri-food systems and preserve ecosystems.

Within BONEX FutureWater will actively contribute to the package of diagnostic tools. A simple water accounting tool (REWAS) will be used to evaluate if ‘Real Water Savings’ are achieved with innovative technologies. The water accounting tool evaluates water flows at field level and irrigation district scale and determines if any ‘real savings’ are achieved. The tool also incorporates the aspects of food production (crop yield) and will introduce components for evaluating energy and water quality aspects to complement the WEFE Nexus aspects. The seven demonstration projects will be used to demonstrate and iteratively develop this water accounting tool. A hydrological analysis is performed in selected locations to also evaluate the impact at basin (watershed) scale. Eventually the results from these analyses will be translated into policy implications and achievements of SDG’s (sustainable development goals).

This project is part of the PRIMA programme supported by the European Union.

UNCCD is the sole legally binding international agreement linking environment and development to sustainable land management. As some of the most vulnerable ecosystems and peoples can be found in arid, semi-arid and dry sub-humid areas, UNCCD especially addresses these drylands. Productive capacities in drylands are threatened by megatrends such as climate change and land degradation, where changing precipitation and temperature potentially exacerbate processes of degradation and where degraded lands make productive systems more vulnerable to impacts of climate change.

UNCCD therefore aims to support the reorientation of productive capacities towards sustainable and resilient patterns, in order to reverse the impact of land degradation and mitigate climate change impact. To this end, UNCCD is interested in the identification of regions and crops at a particularly high risk of land degradation and climate change impact. The outcomes of this activity should support informing of national governments of risk profiles of their main cash crops and, subsequently, support identification of alternatives for value chains that are projected to become insufficiently productive in the future.

Subsequent work will link towards opportunities around other megatrends such as population changes, consumption patterns, energy and shifting geopolitical patterns present in the identification of new value chains.

The study will focus on selection of key traded crops between the EU and Africa and their key producing regions. The tasks will include overall analysis of current practices and the background in the regions, determination of key sensitive parameters in order to select key crops and food products and map hotspot regions. In addition, project team will assess climate risks for these hotspots on key crops and food products and link these risks with the importing countries. Climate risks will be assessed by identifying the multiple climate sensitivities on the food systems in each region, assessing changes predicted by a CMIP6 (latest) climate model ensemble on key agriculture-related climate indices, and analysing impacts on production-related indices, distinguishing between rainfed and irrigated production systems. It will be focused on country specific case studies in each partner country. The impacts of climate change on trade patterns will be evaluated to assess the carbon- and water footprints and virtual water profiles of key traded commodities of these countries. At the end, the project team will focus on policy relevance and assessment of adaptation strategies and identify interventions that will be needed, at which point in the system, and from which sector (or actor) is of interest.

The outcomes of CREATE will be used to increase awareness of the risks that climate change poses to the agro-food trade and the broader economy at large. They can contribute to efforts by the governments (macro-scale), the communities (meso-scale), as well as relevant agricultural producers (micro scale) in the case study countries, by providing essential information for promoting actions towards mitigating the negative consequences of climate change on agro-food trade.

Water and food security are at risk in many places in the world: now and most likely even more in the future, having large economic and humanitarian consequences. Risk managers and decision-makers, such as water management authorities and humanitarian-aid agencies/NGOs, can prevent harmful consequences more efficiently if information is available on-time on (1) the impact on the system, economy or society, and also (2) the probabilities for a failure in the system. EO information has proven to be extremely useful for (1). For looking into the future, considering the uncertainties, novel machine learning techniques are becoming available.

The proposed development is incorporated into an existing solution for providing Drought and Early Warning Systems (DEWS), called InfoSequia. InfoSequia is a modular and flexible toolbox for the operational assessment of drought patterns and drought severity. Currently, the InfoSequia toolbox provides a comprehensive picture of current drought status, based mainly on EO data, through its InfoSequia-MONITOR module. The proposed additional module, called InfoSequia-4CAST, is a major extension of current InfoSequia capabilities, responding to needs that have been assessed in several previous experiences.

InfoSequia-4CAST provides the user with timely, future outlooks of drought impacts on crop yield and water supply. These forecasts are provided on the seasonal scale, i.e. 3-6 months ahead. Seasonal outlooks are computed by a novel state-of-the-art Machine Learning technique. This technique has already been tested for applications related to crop production forecasting and agricultural drought risk financing. The FFTrees algorithm uses predictor datasets (in this case, a range of climate variability indices alongside other climatic and vegetative indices) to generate FFTs predicting a binary outcome – crop yields or water supply-demand balance above or below a given threshold (failure: yes/no).

The activity includes intensive collaboration with stakeholders in Spain, Colombia and Mozambique, in order to establish user requirements, inform system design, and achieve pilot implementation of the system in the second project year. Generic machine learning procedures for training the required FFTs will be developed, and configured for these pilot areas. An intuitive user interface is developed for disseminating the output information to the end users. In addition to development of the forecasting functionality, InfoSequia-MONITOR will be upgraded by integrating state-of-the art ESA satellite data and creating multi-sensor blended drought indices.

Sustainable Development Goal (SDG) 6 seeks to ensure access to clean water and sanitation for all, focusing on the sustainable management of water resources, wastewater and ecosystems. The targets associated with SDG 6 are to be achieved by monitoring and improvement of several indicators. Assessment of these indicators requires a considerable amount of data, which are in many countries not readily available. Also in Myanmar, challenges are posed to the national statistical system to collect, manage and report the necessary input data. As the Myanmar branch of the lead UN development agency, UNDP Myanmar carries out activities to support implementation of the SDGs. Acknowledging the recent political developments in Myanmar, more than ever it is important to explore innovative sources of data to support monitoring and evaluation of progress towards the SDGs. FutureWater was contracted to produce an issue brief which explores the availability of geospatial data, in particular derived from Earth Observation (EO) from satellites, to monitor 4 water-related SDG indicators.

Nature-based Solutions (NbS) can help ensure the long-term reliability of water resources. Research has shown they can – depending on circumstance – be more cost-effective and longer-lasting than grey infrastructure, while generating multiple co-benefits for carbon, biodiversity and human health. Despite the promise of NbS, however, water sector actors and their financiers usually prioritize investments in traditional grey infrastructure because they are more familiar with its costs, benefits and returns. Most of them are unfamiliar with how to develop and assess the value of NbS projects, though research shows they’re interested in tapping into their multi-faceted benefits.

The Financing Nature for Water Security project of The Nature Conservancy (TNC) aims to produce and disseminate guidance that enables water sector actors (government agencies, water utilities, grass-root NGOs) and their funders (donors, development banks and private investors) to invest in NbS-WS, at scale, by mobilizing sustainable funding and repayable financing. The project comprises of technical modules, guidance documents, supporting databases and training materials.

FutureWater has been contracted by TNC to support the development of one of the content modules assembled under the project. The module “Technical Options” will help the reader understand the water security challenge(s) they are confronted with and identify the types of NbS that could help address those challenges. In particular, Futurewater works on the creation of 12 technical factsheets to be included in an annex to the main documentation, with each factsheet highlighting the key technical aspects, benefits and risks, and economic dimensions of an NbS. In addition, an inventory of relevant NbS databases, platforms, and references is delivered.

The Asian Development Bank is supporting the Government of Indonesia in developing its water infrastructure. Impact of climate change and potential adaptation to those changes are evaluated. One component of the project is to assess water availability for all Indonesian catchments currently and under changing climate. FutureWater has supported the program by developing a climate risk screening approach to rapidly assess current water resource availability and the impact of climate change on this.

Various rapid assessment assessments have been tested and the Turc implementation of the Budyko framework has been proven to be effective for basins in Indonesia. ERA5 past climate and NASA-NEX GDDP climate projections have been applied for all basins in Indonesia. Results show that all Indonesian basins are likely to see an increase in runoff over the coming century. However, variability in runoff will increase, with more extreme dry and wet periods. This will have implications for water management planning and climate related hazards such as more prolonged droughts and higher risks of flooding.

Morocco is a country with extremely arid areas and a complex topography. The majority of climate change related studies predict increases in temperature and generalised decreases in precipitation, however the outputs of these studies are limited in that the resolution of the climate models used is relatively low and therefore often does not pick up variation over areas of complex topography (in which much of the population live). This study therefore helps generate a higher resolution, bias corrected climate dataset. It is also important that trends in precipitation, and more importantly drought, are better understood as Morocco is highly vulnerable to water scarcity. This study therefore focuses on the impacts of climate change on extreme low precipitation, which is directly linked to water shortages and drought events. The study adds valuable new insights to climate change impact analysis in Morocco and is the first to use downscaled climate data to focus on sector wise impact. The data outputs will be located at a number of universities and government ministries in Morocco.

In 2016, FutureWater released a new dataset: HiHydroSoil v1.2, containing global maps with a spatial resolution of 1 km of soil hydraulic properties to support hydrological modeling. Since then, the maps of the HiHydroSoil v1.2 database have been used a lot in hydrological modeling throughout the world in numerous (scientific) projects. A few examples of the use of HiHydoSoil v1.2 are shown in the report.

Important input of the HiHydroSoil database is ISRICS’ SoilGrids database: a high resolution dataset with soil properties and classes on a global scale. In May 2020, ISRIC has released the latest version (v2.0) of its Soilgrids250m product. This release has made it possible for FutureWater to update its HiHydroSoil v1.2 database with newer, more precise and with a higher resolution soil data, which resulted in the development and release of HiHydroSoil v2.0.

Soil information is the basis for all environmental studies. Since local soil maps of good quality are often not available, global soil maps with a low resolution are used. Furthermore, soil maps do not include information about soil hydraulic properties, which are of importance in, for example, hydrological modeling, erosion assessment and crop yield modelling. HiHydroSoil v2.0 can fill this data gap. HiHydroSoil v2.0 includes the following data:

  • Organic Matter Content
  • Soil Texture Class
  • Saturated Hydraulic Conductivity
  • Mualem van Genuchten parameters Alfa and N
  • Saturated Water Content
  • Residual Water Content
  • Water content at pF2, pF3 and pF4.2
  • Hydrologic Soil Group (USDA)

Download HiHydroSoil v2.0

The HiHydroSoil v2.0 database can be accessed after filling the brief request form below. A download link to the full dataset will then be provided. The HiHydroSoil v2.0 dataset is organized in two folders, one containing the original data for each of the six depths, and one with the aggregated subsoil and topsoil data. All data layers are delivered in geotiff raster format.

Another option is to access the data through Google Earth Engine. The HiHydroSoil v2.0 data is available on Google Earth Engine using the following link.

Important! To avoid lengthy download times, the data layers originally consisting of float data type were multiplied by a factor of 10,000, and subsequently converted to integer type. It is therefore required to translate the data to the proper units by multiplying with 0.0001. These steps are also described in the readme file delivered with the data.

La Sierra Nevada de Santa Marta, declarada Reserva de la Biosfera por la UNESCO, es un complejo montañoso aislado de aproximadamente 17.000 km², apartado de la cadena de los Andes que atraviesa Colombia. La Sierra Nevada tiene el pico costero más alto del mundo (5.775 m sobre el nivel del mar) a solo 42 kilómetros de la costa del Caribe. La Sierra Nevada es la fuente de 36 cuencas hidrográficas, lo que la convierte en la principal «fábrica de agua» regional que abastece a 1.5 millones de habitantes, así como vastas áreas agrícolas en las llanuras circundantes utilizadas principalmente para el cultivo de banano y palma aceitera. Los principales problemas por resolver en estas cuencas son: i) Disminución de la disponibilidad de agua para riego, ii) Disminución de la disponibilidad y calidad del agua para consumo humano, iii) Aumento de la salinización de aguas subterráneas y suelos, iv) Aumento de la incidencia de inundaciones.

Este proyecto es un estudio de factibilidad sobre la adopción de técnicas de riego más eficientes por parte de los productores de palma aceitera en la cuenca del río Sevilla (713 km²), una de las cuencas más relevantes en la Sierra Nevada. El objetivo general es identificar el entorno local a nivel de cuenca hidrográfica, los factores limitantes y las intervenciones adecuadas en fincas de palma aceitera para mejorar el uso del agua. Se desarrolló una fase de preparación e implementación que incluyó una evaluación del clima, la disponibilidad hídrica, la amenaza de sequía, las características del suelo, el uso de la tierra y la topografía. Se caracterizaron las variedades de palma aceitera, y las prácticas de campo (por ejemplo, manejo de nutrientes y prácticas de riego), y se determinaron las necesidades de agua de los cultivos. Además, se evaluaron los costos y beneficios asociados a la implementación de tecnologías de riego eficientes como ferti-riego y métodos de cosecha de agua. Se evaluaron ubicaciones potenciales, riesgos y oportunidades para la captación de agua con la idea de almacenar agua en la época lluvioso para poder utilizar el recurso de manera eficiente en la época seca. Se utilizó una variedad de conjuntos de datos SIG y satelitales (por ejemplo, CHIRPS, MODIS-ET, MODIS-NDVI, HiHydroSoil) para evaluar las condiciones ambientales, y los socios colombianos Cenipalma y Solidaridad proporcionaron datos e información local para generar una evaluación integral a nivel de cuenca y de finca. La expectativa es que productores de palma aceitera puedan adoptar técnicas de ferti-riego y cosecha de agua para reducir el déficit hídrico y pérdida de fertilizantes para lograr una producción ambientalmente más sostenible.