The objectives of the Norfolk Water Fund is to secure good quality, long-term water resources for all water users, while protecting the environment and showcasing the county as an international exemplar for collaborative water management. The programme seeks to demonstrate how cross-sector, integrated water management and can deliver multiple benefits and help achieve the county’s net zero targets.

Water Funds are a well-established model for facilitating collective action to address water security challenges through the implementation of nature-based solutions (NBS) as a complement for more traditional so-called ‘grey’ infrastructure such as pipelines and treatment plants. Norfolk is one of two European pilots selected for Water Funds by The Nature Conservancy (TNC), to add to their global portfolio of Water Funds.

To deliver this programme, a variety of technical activities are required. These include assessing Water Security Challenges in the county, identifying the most relevant NBS to the context, and prioritising the most effective locations and strategies for their implementation. FutureWater will support these technical activities with NBS and water resources expertise alongside coordinating technical partners.

This MIT feasibility project investigates the opportunities of an innovation project for determining the biomass potential from local nature management and green maintenance using the publicly available Lidar point cloud of the Netherlands.

The results of this feasibility project may lead to an innovative logistics support service where producers and consumers who play a role in the local biomass chain (e.g. nature management organizations, regional governments, energy producers) are provided advice and insight in the stock and availability of local woody biomass suitable for district heating projects or other local energy projects and biobased applications.

In the planned development path, a prototype of this service will be developed, demonstrated, tested, and validated for a pilot area. Using segmentation and classification algorithms, individual trees will be identified and tree-specific parameters relevant to biomass determination will be extracted. The economic perspective and market potential will also be investigated and relevant literature will be reviewed.

With a total annual turnover of approximately 500 million euros, the Netherlands is a major player in the production, import and export of fruits. In spring, when the night temperature drops below freezing point and fruit trees are flowering, fruit growers must protect their crops. If the flower buds were to freeze then no fruit is formed, resulting in enormous economic losses. Protecting the buds is usually done with the help of water, which requires an average of 30 m3 of water per hectare per hour. If several nights of frost occur the limit on water availability can be reached quickly. Moreover, if the quality of the water is not sufficient (e.g. due to salinity), the water can also cause damage to the crops. As a result, about 30% of the fruit companies in the Netherlands cannot use water for frost protection.

As an alternative to using water, wind machines to protect fruit trees against frost is emerging as a promising new and innovative technique. The propeller of the wind machine mixes the cold air with the higher, warmer air and can thus raise the temperature on the ground by several degrees. This feasibility project explores the opportunities of an innovation project for monitoring the effectiveness of wind machines for frost protection in fruit cultivation using flying sensors (drones) equipped with a thermal thermal imager. The results of this feasibility project may lead to an innovative information service intended for fruit growers to:

  1. Provide insight into the effectiveness of wind machines for frost protection as a cost-effective and sustainable alternative to spraying water. This service can target growers who already use wind machines and want to know how effective wind machines provide protection against night frost, but also growers who are considering wind machines and want to know to what extent the application can be suitable for their field.
  2. Advise how the application of wind machines can be optimized in the business operations of fruit companies. This includes optimal placement of the wind machine in the orchard and whether the wind machine is properly adjusted for the type of fruit being grown. This relies on what rotational speeds are needed for a given temperature increase, at what angle the propeller should be aimed, etc.)

A prototype of this service will be developed and demonstrated for a pilot area through a development process. An important part of the development trajectory is research into and development of a:

  1. State-of-art interactive visualization tool to visualize spatial information within a
  2. (beta) web application such as a dashboard to offer the innovative information service to the end user (fruit grower).

The power of flying sensors with thermal imaging cameras is that the temperature-increasing effect of wind machines can be measured very precisely and can also be mapped spatially. This visual information can provide the fruit grower with insight and confidence that wind machines are effective for frost protection.

Nature-based Solutions (NbS) can help ensure the long-term reliability of water resources. Research has shown they can – depending on circumstance – be more cost-effective and longer-lasting than grey infrastructure, while generating multiple co-benefits for carbon, biodiversity and human health. Despite the promise of NbS, however, water sector actors and their financiers usually prioritize investments in traditional grey infrastructure because they are more familiar with its costs, benefits and returns. Most of them are unfamiliar with how to develop and assess the value of NbS projects, though research shows they’re interested in tapping into their multi-faceted benefits.

The Financing Nature for Water Security project of The Nature Conservancy (TNC) aims to produce and disseminate guidance that enables water sector actors (government agencies, water utilities, grass-root NGOs) and their funders (donors, development banks and private investors) to invest in NbS-WS, at scale, by mobilizing sustainable funding and repayable financing. The project comprises of technical modules, guidance documents, supporting databases and training materials.

FutureWater has been contracted by TNC to support the development of one of the content modules assembled under the project. The module “Technical Options” will help the reader understand the water security challenge(s) they are confronted with and identify the types of NbS that could help address those challenges. In particular, Futurewater works on the creation of 12 technical factsheets to be included in an annex to the main documentation, with each factsheet highlighting the key technical aspects, benefits and risks, and economic dimensions of an NbS. In addition, an inventory of relevant NbS databases, platforms, and references is delivered.

«Gabon is a rapidly developing country that contains substantial amount of intact natural areas and biodiversity, and large untapped natural resource stocks, placing the country at the forefront of a green economic development opportunities. TNC supports the government in preserving Hydrologic Ecosystem Services which are essential to include into development projects as for example hydropower.

This study will assess these services for the Komo basin where certain pressure already exists due to forestry operations and planned hydropower. It will evaluate various management scenarios which may improve and sustain hydrological flow conditions and hydropower options. The analysis will help the government in implementing an integrated water resources management (IWRM) approach in this basin.

FutureWater will deliver this study through hydrological modeling and scenario analysis to assess how hydrological ecosystem services provision in the Komo basin can be improved by a series of potential alternative scenarios based.»

The proposed Mombasa Water Fund should secure and improve the quantity and quality of source waters for Mombasa City by channelling investments into source protection and catchment conservation measures of the watersheds. Current spring- and groundwater-based water supply infrastructure is insufficient to meet the city’s growing demands. Focus of the study is therefore on the watershed that serves a new water reservoir (Mwache Dam).

The design study will:

  • Assess the biophysical, financial, economic and socio-economic benefits of the MWF; and
  • Identify the potential governance and financing models to establish the MWF

FutureWater performs the biophysical analysis of this study. It aims to link activities in the watershed with positive outcomes for water security. Different combinations of solutions (nature-based primarily) are simulated through an hydrological modelling tool to assess impacts on water quantity and quality, including erosion and sediment yield. The model allows also to assess water demand versus supplies and resulting possible future shortages. Outputs are used in the economic analysis that will cost and valuate different alternative scenarios. The business case study should enable the creation of another successful Water Fund in sub-Saharan Africa promoted by The Nature Conservancy.

Kyrgyzstan is a highly mountainous country with relatively high precipitation in upslope areas. This, alongside the development and deforestation of basins to make way for industry and agriculture means that land has become increasingly degraded and vulnerable to erosion over recent decades. Reservoirs in the country provide access to water resources and energy in the form of hydropower, but are highly susceptible to sedimentation by eroded material. Sedimentation necessitates increased maintenance costs, reduces storage capacity and disrupts hydropower generation. It is therefore proposed that landscape scale restoration measures (e.g. tree planting) can provide key ecosystem services by reducing vulnerability to erosion and decreasing sediment delivery to reservoirs. This project therefore identifies highly degraded areas of land and determines in which of these interventions are possible. With the outcomes of this study, the World Bank – in partnership with the government of Kyrgyzstan – can prioritise investments in terms of landscape restoration efforts. The outcomes of this project will therefore reduce maintenance costs for reservoirs and contribute to the afforestation and restoration of multiple areas in Kyrgyzstan.

The Ridge to Coast, Rain to Tap: Sustainable Water Supply Project (R2CR2T) is an integrated approach to addressing flooding in the Cagayan River basin on Mindanao in the Philippines. R2CR2T is a Public Private Partnership led by VEI together with the partners COWD (Cagayan de Oro Water District), FITC, UTPI/Hineleban Foundation Inc. (HFI), Philippines- and Netherlands Red Cross, Cagayan de Oro River Basin Management Council (CDORBMC), and Wetlands International. R2CR2T is funded by RVO through the Sustainable Water Fund programme.

The Cagayan River Basin is characterized by an upstream mountainous area with steeply sloping terrain towards downstream Cagayan de Oro city. Upstream deforestation and land degradation are known to increase risk of flooding in the city, which is at present already at a high level. One expected outcome of R2CR2T is to have an enabling environment for stakeholders, both private and public sector, to undertake activities related to sustainable land management in the Cagayan River Basin. A Decision Support Tool (DST) for identifying critical areas and approaches for rehabilitation and its benefits regarding flood risk reduction, soil erosion reduction, and enhancing dry season flows, will be developed based on a scientifically-sound hydrological model for the watershed of the Cagayan River.

FutureWater was hired to advise on the development of the DST and hydrological model, critically review the quality and applicability of (intermediate) outputs by the local team and their service providers, and provide an external and international ‘helicopter view’ on the eco-hydrological aspects of the project. In a general sense, FutureWater supports the R2CR2T project team to maximize the impact of the DST will have for the CDORB region and stakeholders.

The Inle Lake in Myanmar is renowned for a number of traditional cultural and livelihood practices, which have made it one of the main attractions for Myanmar’s booming tourism industry. The lake is, however, suffering environmental degradation from the combined effects of unsustainable resource use, increasing population pressures, climate variability and rapid tourism development. UNDP is supporting the establishment of ILMA, which will have the mandate to manage conservation activities in the Inle Lake protected area.

Under this project, a set of maps will be developed and delivered to the ILMA geodatabase. Different methods, including satellite remote sensing and GIS, will be integrated to complete an updated boundary demarcation of the protected area, based on the Inle Lake watershed boundaries and recent developments in land use. Key ecosystem services of Inle Lake region will be mapped, which will inform an updated zoning (core zone, buffer zone, transition zone) of Inle Lake protected area. Workshops and bilateral meetings are organized to consult with the government stakeholders at several steps during the project, and a training workshop on ecosystem services mapping will be organized at the end of the project.

The framework used for this evaluation has been the IFC Performance Standards 3 (Resource Efficiency and Pollution Prevention) and 6 (Biodiversity Conservation and Sustainable Management of Living Natural Resources), complemented with what is considered good practice.