Morocco is a country with extremely arid areas and a complex topography. The majority of climate change related studies predict increases in temperature and generalised decreases in precipitation, however the outputs of these studies are limited in that the resolution of the climate models used is relatively low and therefore often does not pick up variation over areas of complex topography (in which much of the population live). This study therefore helps generate a higher resolution, bias corrected climate dataset. It is also important that trends in precipitation, and more importantly drought, are better understood as Morocco is highly vulnerable to water scarcity. This study therefore focuses on the impacts of climate change on extreme low precipitation, which is directly linked to water shortages and drought events. The study adds valuable new insights to climate change impact analysis in Morocco and is the first to use downscaled climate data to focus on sector wise impact. The data outputs will be located at a number of universities and government ministries in Morocco.

The Sous-Massa basin is located in central Morocco. It represents an arid area that will likely face water resources challenges into the coming decades due to the influence of climate change and socioeconomic development. Indeed, increases in temperatures and decreases in precipitation are anticipated in the Sous-Massa region, alongside more extreme intense precipitation and drought events. It is therefore important the the impacts of climate change on water availability are better constrained to target resilience measures and better prepare for potential future water scarcity.

With the results of this project, IMWI will be able to apply the Water Accounting Plus framework to the Sous-Massa basin, helping to better constrain the likely impacts of climate change on future water availability. This project therefore helps support the targeting and prioritisation of climate resilient interventions which can be taken by the government and other members of the water sector in this area of Morocco.

Hydropower is essential to fulfill future energy demands. Water scarcity is likely to increase due to climate change and aase in water demand. Therefore, Climate Risk Assessments are required before large investments in new and large hydropower stations (>100 MW) are made. Small hydropower (1 – 20 MW) does not require these Climate Risk Assessments yet, but this will eventually happen in the future. Investors are highly interested in the profitability of these small hydropower stations, especially because of the uncertainty caused by future climate change. Current methods for Climate Risk Assessments (CRA) are however still too costly for these small-hydro projects because they are very labor intensive and require specific knowledge.

FutureWater has carried out a feasibility study to assess the possibilities for the development of a «Small-Hydro Climate Risk Assessment tool» (SH-CRA) that can make CRA’s for small-hydro projects cost effective. The starting point of this project to develop the SH-CRA is the recent change in the approach to CRA’s: until a few years ago, these were based purely on climate models, also known as the “Top-down” approach. Nowadays however, investors require a more pragmatic approach in which climate risks are balanced against other risks and presented in a clear way. This new “Bottom-up” approach makes it possible for small-hydro projects to include climate risks in the investment decision.

This feasibility project has therefore investigated whether the “bottom-up” climate risk analysis approach can make it possible to develop such a SH-CRA solution, based on a combination of literature research, an inventory of available technology and potential partners, and competition analysis.

Para atender a los retos de desarrollo territorial y de adaptación al cambio climático a los que se enfrenta la Cuenca Hidrográfica del Canal de Panamá (CHCP), la Autoridad del Canal de Panamá (ACP) ha puesto en marcha la generación de un instrumento rector de carácter regional -PIOTA- en el que se establecerá la hoja de ruta a seguir (Ruta Verde 2050) para garantizar la seguridad hídrica de la población, el desarrollo socioeconómico y la gestión integral y sostenible de la región, y el mantenimiento de las operaciones del Canal de Panamá, y de los servicios ecosistémicos de la cuenca. Los desafíos planteados cobran particular relevancia bajo escenarios de gran incertidumbre debido al cambio climático y las crecientes presiones sobre los recursos hídricos derivadas del crecimiento poblacional y la urbanización, y el deterioro ambiental observado en las zonas rurales y periurbanas del área metropolitana del país.

La cooperación técnica que se ofrece a través de este proyecto permitirá a la ACP y al BID diseñar un esquema de implementación de intervenciones (a nivel estratégico y de ejecución de proyectos) para fomentar el desarrollo sostenible de la CHCP.

El proyecto se ejecuta en 4 fases (Figura 1):

  1. Diagnóstico, donde se realizan la caracterización sectorial e integrada del modelo territorial actual
  2. Prospectiva, donde se implementará una metodología de decisión robusta para la cuantificación de la vulnerabilidad del sistema actual, y futura frente a la incertidumbre impuesta por el cambio climático, diferentes escenarios de desarrollo socio-económico, y opciones de adaptación.
  3. Estrategia, para la descripción detallada de la “Ruta Verde 2050” incluyendo las líneas de actuación y de ordenación ambiental, y las estrategia de mitigación y adaptación.
  4. Plan (PIOTA), que abordará los aspectos prácticos de relacionados con zonificación territorial, los estudios de prefactibilidad, y un programa de evaluación y monitoreo para garantizar la implementación efectiva del Plan de Ordenación
Figura 1. Fases del Proyecto “PIOTA para la Cuenca Hidrográfica del Canal de Panamá”.

FutureWater contribuye al proyecto asumiendo la responsabilidad de la Fase 2, para lo cual se aprovechará de la experiencia adquirida en los últimos años y otros lugares del mundo en relación a la aplicación de metodologías de decisión robusta, y la cuantificación de la vulnerabilidad de los sistemas hídricos frente a escenarios de cambio climático y de desarrollo territorial. La aplicación de la metodología incluirá la construcción de un modelo de oferta-demanda usando la herramienta WEAP y la capacitación técnica de la ACP, la cuantificación de la incertidumbre climática y la generación de escenarios de clima regionalizados para el área de estudio, y la aplicación de marco analítico para cuantificar el desempeño y la vulnerabilidad la cuenca frente a los escenarios de cambio analizados y las posibles opciones y estrategias de adaptación concertadas con los agentes de interés.

Visite este sitio web para obtener más información sobre el proyecto: https://piota-panama-cyt.hub.arcgis.com/

The Paris Agreement requests each country to outline and communicate their post-2020 climate actions, known as their NDCs. These embody efforts by each country to reduce national emissions and adapt to the impacts of climate change. As ratifying parties, Armenia, Georgia and Uzbekistan must therefore outline how they intend to implement their NDCs and provide information on what the focus of this spending will be. To support this effort, the Asian Development Bank (ADB) is implementing a knowledge and support technical assistance cluster which will help enhance capacities of developing member countries (DMCs) in meeting their climate objectives by assisting in refining and translating nationally determined contributions (NDCs) into climate investment plans.

In this work package, ADB aims to support Georgia, Armenia, and Uzbekistan with the implementation of their NDCs through developing urban climate assessments (UCAs) and mainstreaming low carbon and climate resilience measures into urban planning processes. FutureWater contributed to this effort by supporting knowledge creation in relation to climate change and adaptation which will help each country to make more informed climate investment decisions.This was accomplished by conducting analysis of downscaled climate model ensembles for different climate change scenarios and synthesising data related to urban climate risk.

Climate change trend assessments were conducted using the NASA-NEX downscaled climate model ensemble combined with ERA-5 climate reanalysis products. To determine climate risk at the urban level, a number of openly available datasets were analysed and compiled using a spatial aggregation approach for 16 cities in the area. Results were presented as user-friendly climate risk profiles at the national and urban scales, allowing for insights into climate trends and risks over the coming century. These will be presented to non-expert decision makers to help support Armenia, Georgia and Uzbekistan develop targeted and informed NDCs.

The overall aim of the Guidance is to supporting adaptation decision making for climate-resilient investments with the main objective to scale-up ADB’s investments in climate change adaptation in Asia and the Pacific. The Good Practice Guidance on climate-resilient infrastructure design and associated training modules will help project teams to incorporate climate projections information into project design. The guideline is based both on insights gained by experts in supporting climate-resilient project development, and on state-of-the-art reviews of emerging engineering design and decision-making protocols that reflect the impacts of climate change. Sector guidance will be provided for agriculture and food security, energy, transport, urban development, and water. FutureWater takes the lead in the water sector guidance.

Training modules targeting member countries officials and ADB operational staff involved in the design of resilient infrastructure projects will be developed to facilitate the wider dissemination of, and capacity building around, the good practice guidance and enhanced availability of climate projections data. Training modules will be developed for both in person delivery at training sessions and distance learning to enable on-demand technical capacity building. The format of the in-person training sessions will be determined in consultation with the operational teams and could take a “training of trainers” approach.

The Asian Development Bank supports Tajikistan in achieving increased climate resilience and food security through investments in modernization of Irrigation and Drainage (I&D) projects. A Technical Assistance is preparing modernization projects for two I&D systems in the Lower Vaksh river basin in Tajikistan. In line with this, the TA will prepare a holistic feasibility study and project design for the system (38,000 ha), as well as advanced designs and bidding documents for selected works.

FutureWater is part of the team of international experts, working together with the local consultant on the climate risk and adaptation assessment that accompanies the feasibility projects. For this purpose, past climate trends will be analyzed, climate model projections processed, and a climate impact model will be used to assess how the project performs under a wide range of future conditions, to assess the robustness of the proposed I&D investments, and identify possible climate adaptation measures.

The project should increase agricultural water use productivity in the selected agricultural districts in Uzbekistan through a threefold approach: (i) climate resilient and modernized I&D infrastructure to improve measurement, control and conveyance within existing systems; (ii) enhanced and reliable onfarm water management including capacity building of water consumers’ associations (WCAs), physical improvements for land and water management at the farm level and application of high level technologies for increased water productivity; and (iii) policy and institutional strengthening for sustainable water resources management. This will include strategic support to the Ministry of Water Resources (MWR) and its provincial, basin and district agencies.

The project supports the Strategy of Actions on Further Development of Uzbekistan (2017), which includes: (i) introduction of water saving technologies and measures to mitigate the negative impact of climate change and drying of the Aral Sea; (ii) further improvement of irrigated lands and reclamation and irrigation facilities; and (iii) modernization of agriculture by educating areas of cotton and cereal crops to expand horticulture production.

FutureWater focuses on the climate risk and adaptation assessment that accompanies the feasibility projects, and will analyze climate trends, climate model projections, climate impacts on the projects and assess adaptation options.

Watch the video below to learn more about the management of Climate Adaptive Water Resources in the Aral Sea Basin in Uzbekistan (source: ADB)

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.

Este proyecto estudia la sensibilidad del Sistema de Recursos Hídricos de la Cuenca Chancay-Lambayeque (Perú) frente a los cambios impuestos por fuerzas climáticas y no climáticas, a la vez que se analiza un paquete de intervenciones propuestas por diferentes organismos de planificación y gestión para garantizar el suministro de agua a ~400,000 personas, expandir la superficie de riego, garantizar las demandas ambientales, y reducir los riesgo de inundación asociados a los periodos de El Niño.

La evaluación se llevó a cabo utilizando el Marco de Árbol de Decisión de Banco Mundial (DTF en sus siglas en inglés, Ray y Brown, 2015). El DTF es una metodología pragmática de toma de decisiones para la evaluación de riesgos en el ámbito de los recursos hídricos y cuya utilidad se ha demostrado en otros contextos y regiones (Upper Arun en Nepal, Mwache en Kenia, Cutzamala en México). El DTF aplica un enfoque ascendente y escalonado en cuatro fases en el que cada fase, a excepción de la primera, se activa solo si es necesario. En la fase I (Exploración del proyecto) se define y describe, con apoyo de los actores locales, el contexto regional y las incertidumbres climáticas y no climáticas del área de estudio, los indicadores y umbrales críticos de desempeño, y las diferentes opciones de adaptación planteadas. La fase II (Análisis Inicial) utiliza técnicas sencillas de análisis de sensibilidad para identificar, en base a los indicadores y umbrales de desempeño, cuáles son los factores de incertidumbre más relevantes para el sistema. Si se determina que el sistema es sensible, se lleva a cabo un Análisis de Estrés Climático (Fase III) donde el sistema de recursos hídricos se somete a pruebas de estrés para una amplia gama de escenarios futuros plausibles, y se calculan los indicadores de desempeño para cada escenario planteado. Si se confirma la sensibilidad del sistema a los diferentes escenarios y factores de incertidumbre, se realiza un análisis de Gestión de Riesgos Climáticos (Fase IV) para evaluar cómo diferentes opciones de intervención mejoran el desempeño del sistema en términos de resistencia, confiabilidad, robustez y resiliencia. Estos indicadores de desempeño se acompañan finalmente de un detallado análisis de costes para obtener métricas de coste-efectividad y así poder priorizar las intervenciones.

Ejemplos de Superficies de Respuesta al Clima (SRC) para la confiabilidad del suministro de riego bajo diferentes horizontes de demanda hídrica.

En el proyecto se analizaron diferentes alternativas como la construcción de nuevos embalses, el incremento de la explotación de aguas subterráneas, y medidas de conservación y regeneración de la cubierta vegetal (infraestructura verde). El comportamiento de estas alternativas, aisladas o combinadas, se evaluaron bajos escenarios de cambio climático, de cambios de demandas domésticas y de riego, y de pérdida de capacidad de almacenamiento por colmatación de embalses.

FutureWater contribuye a este proyecto en todas sus fases (recolección y organización de datos, co-diseño de experimentos, simulación y evaluación de resultados, y redacción de informes). Específicamente está encargado de la adaptación de los modelos de asignación de recursos, y la simulación de escenarios para la cuantificación de indicadores de desempeño y efectividad a nivel de sistema hídrico.