TU Delft y TAHMO (Observatorio Hidrometeorológico Transafricano), junto con la embajada holandesa en Ghana, han puesto en marcha un proyecto para mejorar los datos meteorológicos locales, ayudar a los agricultores ghaneses a extraer de ellos información útil y promover así un sector hortícola inteligente desde el punto de vista climático en Ghana.

FutureWater apoya el proyecto investigando los datos óptimos de plantación de varios cultivos habituales en Ghana, como tomates, berenjenas y cebollas. El objetivo final es proporcionar a agricultores y extensionistas información específica sobre las fechas óptimas de plantación de distintos cultivos hortícolas.

Nuestra metodología se inspira en Agoungbome et al (2024) y su análisis de los periodos de siembra seguros en África Occidental. Evaluaremos tres enfoques diferentes para determinar las fechas de siembra: una estrategia basada en las precipitaciones que requiere una acumulación de 20 mm sin periodos secos posteriores, un inicio agronómico que requiere días lluviosos consecutivos, y una ventana de siembra segura basada en modelos que identifica fechas que rinden al menos el 90% del máximo potencial.

Utilizaremos el modelo AquaCrop de la FAO para simular el crecimiento de los cultivos en diferentes fechas de siembra durante los últimos 30 años. Mediante la simulación de más de 100 fechas de siembra diferentes por año, podemos evaluar la eficacia de las estrategias de siembra tanto tradicionales como basadas en datos meteorológicos. Además, podemos evaluar cómo han cambiado las fechas óptimas de siembra en los últimos 30 años debido al cambio climático y cómo afecta la sequía a las estrategias óptimas de siembra.

También será la primera vez que FutureWater utilice la versión Python de código abierto de AquaCrop, desarrollada por nuestro antiguo colega Tim Foster. Será emocionante ver cómo la precisión del modelo AquaCrop se fusiona con la potencia del marco de Python. En la medida de lo posible, también exploraremos cómo puede ampliarse el modelo AquaCrop OSPy para incluir más funciones del modelo AquaCrop original, como la simulación de la fertilidad.

Este proyecto no sólo explorará nuevos territorios en el campo de los marcos de siembra en Ghana, sino que también proporcionará información útil a los agricultores ghaneses y les ayudará a prepararse mejor para un clima que ya está cambiando.

Agoungbome, S. M. D., ten Veldhuis, M.-C., & van de Giesen, N. (2024). Safe Sowing Windows for Smallholder Farmers in West Africa in the Context of Climate Variability. Climate, 12(3), 44. https://doi.org/10.3390/cli12030044

El proyecto BUCRA (Construyendo Unidad para una Agricultura Resiliente al Clima) se centra en mejorar la resiliencia agrícola en Qahbunah, una comunidad agrícola en el delta del Nilo en Egipto. Frente a desafíos como la escasez de agua, el cambio climático y la fragmentación de la tierra, los agricultores locales requieren enfoques innovadores para sostener sus medios de vida.

En el corazón de BUCRA se encuentran dos herramientas de vanguardia desarrolladas por FutureWater: Croptimal y SOSIA, que combinan tecnología avanzada con conocimientos locales para transformar las prácticas agrícolas tradicionales.

Croptimal es una herramienta de análisis de idoneidad climática que aprovecha proyecciones climáticas, datos geoespaciales y conocimientos agrícolas para evaluar la idoneidad de diversos cultivos bajo escenarios climáticos actuales y futuros. Al identificar áreas y cultivos que son más resilientes a factores climáticos adversos como el calor, la salinidad y la escasez de agua, Croptimal empodera a los agricultores con recomendaciones basadas en datos para optimizar la selección de cultivos y estrategias de siembra. Esta herramienta proporciona mapas altamente detallados y consejos prácticos, lo que permite a los agricultores adaptar sus prácticas a los desafíos del cambio climático mientras aumentan su productividad.

SOSIA (Asesoría de Riego de Código Abierto Basada en Satélites) es una herramienta de gestión del riego diseñada para mejorar la eficiencia en el uso del agua. Utiliza datos satelitales de código abierto, información meteorológica en tiempo real y condiciones locales del suelo para proporcionar recomendaciones diarias de riego precisas. Los agricultores reciben indicaciones a través de WhatsApp sobre cuánto tiempo regar sus cultivos cada día, lo que hace que el servicio sea accesible y rentable. Este enfoque innovador no solo reduce el consumo de agua, sino que también mejora los rendimientos de los cultivos y la eficiencia energética, abordando las crecientes presiones sobre los recursos hídricos en el delta del Nilo.

Además de estas herramientas, BUCRA incluye parcelas de demostración que exhiben técnicas inteligentes frente al clima, como el riego eficiente, la gestión del suelo y la rotación de cultivos. Los agricultores también participarán en un programa de aprendizaje combinado que integra capacitación práctica en campo con aplicaciones digitales fáciles de usar para mejorar sus habilidades técnicas y conocimientos.

BUCRA pone un fuerte énfasis en empoderar a la juventud y a las mujeres en la agricultura, fortalecer los vínculos con el mercado y promover prácticas sostenibles de uso del suelo. Al alinear la experiencia neerlandesa con las necesidades locales, el proyecto tiene como objetivo aumentar la productividad, estabilizar los ingresos y construir un futuro agrícola sostenible en Qahbunah.

La visión a largo plazo es inspirar una adopción más amplia de estas herramientas y prácticas, garantizando la seguridad alimentaria e hídrica en la región mientras se abordan los desafíos que plantea el cambio climático.

Uzbekistan is highly sensitive to climate change which will cause changes in the water flows and distribution: water availability, use, reuse and return flows will be altered in many ways due to upstream changes in the high mountain regions, but also changes in water demand and use across the river basin. The resulting changes in intra-annual and seasonal variability will affect water security of Uzbekistan. Besides, climate change will increase extreme events which pose a risk to existing water resources infrastructure. An integrated climate adaptation approach is required to make the water resources system and the water users, including the environment, climate resilient.

This project will support the Ministry of Water Resources (MWR) of Uzbekistan in identifying key priorities for climate adaptation in the Amu Darya river basin and support the identification of investment areas within Amu Darya river basin. The work will be based on a basin-wide climate change risk assessment as well as on the government priorities with an explicit focus on reducing systemic vulnerability to climate change.

The project will undertake:

  • Climate change risk analysis and mapping on key water-related sectors, impacts on rural livelihoods, and critical water infrastructures.
  • Climate change adaptation strategic planning and identify barriers in scaling up adaptation measures at multiple scales with stakeholder consultation and capacity building approach.
  • Identification of priority measures and portfolios for integration into subproject development as well as for future adaptation investment in the Amu Darya river basin. The identification will cover shortlisting of potential investments, screening of economic feasibility, and potential funding opportunities.

FutureWater leads this assignment and develops the climate risk hotspot analysis, and coordinates the contribution of international and national experts, as well as the stakeholder consultation process.

La región mediterránea se enfrenta a desafíos cada vez mayores para garantizar el suministro de agua y alimentos, ya que los países experimentan un aumento de la demanda y una disminución de la disponibilidad de recursos naturales. El enfoque del nexo pretende gestionar y aprovechar las sinergias entre sectores mediante una gestión eficiente e integrada del nexo entre agua, energía, alimentos y ecosistemas (WEFE).

Los objetivos de BONEX son proporcionar herramientas prácticas y adaptadas, examinar innovaciones tecnológicas concretas y adaptadas al contexto, mejorar las políticas y la gobernanza y facilitar una aplicación práctica del nexo WEFE que equilibre las compensaciones sociales, económicas y ecológicas.

El objetivo del proyecto es elaborar un novedoso marco transdisciplinar de diagnóstico del nexo WEFE, que combine métodos adaptados al contexto y vaya más allá de los enfoques disciplinarios tradicionales. Las herramientas de diagnóstico que respaldan el marco se desarrollarán y probarán en siete proyectos de demostración seleccionados en la región, que pilotarán tecnologías innovadoras (agrivoltaicos, sistemas de reutilización de aguas residuales, etc.).

Como resultado, BONEX proporcionará a los responsables políticos y a los profesionales una herramienta interactiva de apoyo a la toma de decisiones para evaluar las compensaciones, las sinergias y los enfoques de soluciones del nexo de forma transdisciplinaria. Además, generará experiencias valiosas sobre la adaptación de tecnologías innovadoras del nexo WEFE que proporcionarán nuevas oportunidades de negocio. El enfoque del nexo WEFE es fundamental para implementar sistemas agroalimentarios sostenibles y preservar los ecosistemas.

Dentro de BONEX, FutureWater contribuirá activamente al paquete de herramientas de diagnóstico. Se utilizará una herramienta sencilla de contabilización del agua (REWAS) para evaluar si se logra un «ahorro real de agua» con las tecnologías innovadoras. La herramienta de contabilización del agua evalúa los flujos de agua a nivel de campo y a escala de distrito de riego, y determina si se alcanza un «ahorro real». La herramienta también incorporará aspectos relacionados con la producción de alimentos (rendimiento de los cultivos) y añadirá componentes para evaluar aspectos relacionados con la energía y la calidad del agua, complementando así los aspectos del nexo WEFE. Los siete proyectos de demostración se utilizarán para demostrar y desarrollar esta herramienta de forma iterativa. Se realizará un análisis hidrológico en ubicaciones seleccionadas para evaluar también el impacto a escala de cuenca hidrográfica. Finalmente, los resultados de estos análisis se traducirán en implicaciones políticas y en logros relacionados con los Objetivos de Desarrollo Sostenible (ODS).

Este proyecto forma parte del programa PRIMA, apoyado por la Unión Europea.

Agriculture is a key sector of the Rwandan economy; it contributes approximately 33% to the gross domestic product and employs more than 70% of the entire labour force. Although some farmers are already using water-efficient irrigation infrastructure, too much of the available water is still lost due to unsustainable use of existing irrigation systems, and/or maximum crop yields are not achieved due to under-irrigation.

Hence, small to medium-sized food producers in Rwanda do not have sufficient access to information regarding optimal irrigation practices. To close this information gap, FutureWater has devised an innovation that can calculate a location-specific irrigation advice based on Virtual Weather Stations, expressed in an irrigation duration (“SOSIA”). The use of the outdated CROPWAT 8.0 method, and the lack of good coverage of real-time weather stations in Rwanda, means that current advice falls short. In addition, existing advisory services are often too expensive for the scale on which small to medium-sized farmers produce. There is a potential to increase the productivity of the irrigation water by up to 25%. Initially, the innovation will be disseminated via the Holland Greentech network, with a pilot in Rwanda consisting of 40 customers. Aside from further refining the SOSIA tool, upscaling strategies will be explored in this second phase to identify other intermediaries that could benefit from the SOSIA service so to realize its optimal impact.

FutureWater has found with Holland Greentech an ideal partner to roll-out this innovation due to their presence in and outside of Rwanda, where they provide irrigation kits and advice. This offers the opportunity to quickly scale-up the proposed innovation. With their expertise in agro-hydrological modeling and the African agricultural sector, FutureWater and Holland Greentech respectively have acquired ample experience to make this innovation project and its knowledge development to a success.

The tools can be accessed through online URLs for the Virtual Weather Stations and for the Irrigation Advisory Tool.

The beneficiaries of this training, provided by FutureWater together with Solidaridad, belong to the Zambia Agricultural Research Institute (ZARI).
ZARI is a department within the Ministry of Agriculture of Zambia with the overall objective to provide a high quality, appropriate and cost-effective service to farmers, generating and adapting crop, soil and plant protection technologies. This department comprises a number of sections, one of which, for the purpose of this training request is the Soil and Water Management (SWM) division. ZARI and the SWM carry out demand-driven research, trying to find solutions to the problems faced by Zambian small-scale farmers, especially considering the near- and long-term impacts of climate change.
The training programme consists of a hybrid approach of e-learning and in-person training sessions and is structured around the following modules:
  1. Remote sensing-based analysis using Google Earth Engine to assess trends in land use, management, degradation and hotspots for intervention.
  2. Data collection and database management.
  3. GIS and remote sensing to assess suitability for SWC.
  4. Effectiveness and prioritization of SWC using open-source tools.
  5. Independent working on case study.
At the end of the training, it is expected that participants have achieved several objectives such as acquisition of technical skills for extracting relevant data from open access remote sensing products and improved knowledge of data collection and database management.

In irrigated agriculture options to save water tend to focus on improved irrigation techniques such as drip and sprinkler irrigation. These irrigation techniques are promoted as legitimate means of increasing water efficiency and “saving water” for other uses (such as domestic use and the environment). However, a growing body of evidence, including a key report by FAO (Perry and Steduto, 2017) shows that in most cases, water “savings” at field scale translate into an increase in water consumption at system and basin scale. Yet despite the growing and irrefutable body of evidence, false “water savings” technologies continue to be promoted, subsidized and implemented as a solution to water scarcity in agriculture.

The goal is to stop false “water savings” technologies to be promoted, subsidized and implemented. To achieve this, it is important to quantify the hydrologic impacts of any new investment or policy in the water sector. Normally, irrigation engineers and planners are trained to look at field scale efficiencies or irrigation system efficiencies at the most. Also, many of the tools used by irrigation engineers are field scale oriented (e.g. FAO AquaCrop model). The serious consequences of these actions are to worsen water scarcity, increase vulnerability to drought, and threaten food security.

There is an urgent need to develop simple and pragmatic tools that can evaluate the impact of field scale crop-water interventions at larger scales (e.g. irrigation systems and basins). Although basin scale hydrological models exist, many of these are either overly complex and unable to be used by practitioners, or not specifically designed for the upscaling from field interventions to basin scale impacts. Moreover, achieving results from the widely-used FAO models such as AquaCrop into a basin-wide impact model is time-consuming, complex and expensive. Therefore, FutureWater developed a simple but robust tool to enhance usability and reach, transparency, transferability in data input and output. The tool is based on proven concepts of water productivity, water accounting and the appropriate water terminology, as promoted by FAO globally (FAO, 2013). Hence, the water use is separated in consumptive use, non-consumptive use, and change in storage.

A complete training package was developed which includes a training manual and an inventory of possible field level interventions. The training manual includes the following aspects:

  1. Introduce and present the real water savings tool
  2. Describe the theory underlying the tool and demonstrating some typical applications
  3. Learn how-to prepare the data required for the tool for your own area of interest
  4. Learn when real water savings occur at system and basin scale with field interventions

For smallholder farming systems, there is a huge potential to increase water productivity by improved (irrigated) water management, better access to inputs and agronomical knowledge and improved access to markets. An assessment of the opportunities to boost the water productivity of the various agricultural production systems in Mozambique is a fundamental precondition for informed planning and decision-making processes concerning these issues. Methodologies need to be employed that will result in an overall water productivity increase, by implementing tailored service delivery approaches, modulated into technological packages that can be easily adopted by Mozambican smallholder farmers. This will not only improve the agricultural (water) productivity and food security for the country on a macro level but will also empower and increase the livelihood of Mozambican smallholder farmers on a micro level through climate resilient production methods.

This pilot project aims at identifying, validating and implementing a full set of complementary Technological Packages (TP) in the Zambezi Valley, that can contribute to improve the overall performance of the smallholders’ farming business by increasing their productivity, that will be monitored at different scales (from field to basin). The TPs will cover a combination of improvement on water, irrigation, and agronomical management practices strengthened by improved input and market access. The goal is to design TPs that are tailored to the local context and bring the current family sector a step further in closing the currently existing yield gap. A road map will be developed to scale up the implementation of those TPs that are sustainable on the long run, and extract concrete guidance for monitoring effectiveness of interventions, supporting Dutch aid policy and national agricultural policy. The partnership consisting of Resilience BV, HUB, and FutureWater gives a broad spectrum of expertise and knowledge, giving the basis for an integrated approach in achieving improvements of water productivity.

The main role of FutureWater is monitoring water productivity in target areas using an innovative approach of Flying Sensors, a water productivity simulation model, and field observations. The flying sensors provide regular observations of the target areas, thereby giving insight in the crop conditions and stresses occurring. This information is used both for monitoring the water productivity of the selected fields and determining areas of high or low water productivity. Information on the spatial variation of water productivity can assist with the selection of technical packages to introduce and implement in the field. Flying sensors provide high resolution imagery, which is suitable for distinguishing the different fields and management practices existent in smallholder farming.

In May 2020, FutureWater launched an online portal where all flying sensor imagery from Mozambique, taken as part of the APSAN-Vale project, can be found: futurewater.eu/apsanvaleportal

Project video: Portrait of the activities on water productivity

This tailor-made training aims to build capacity in using tools to support climate-smart irrigation strategies to improve salinity control and enhance agricultural production. The training provides participants with relevant hands-on experience and cutting-edge knowledge on innovative solutions in earth observation technologies and apply this to assess measures for increasing water efficiency in agriculture, increase production and achieve water and climate-smart agriculture.

The training programme will consist of two e-learning training periods, that are separated by a 3-week period of regular on-distance support. The main e-learning training will take place over a 6-week period and is structured around 3 training modules that are divided into several training sessions. These training sessions are comprised of plenary video conferences and include assignments that can be worked on pairwise of individually. Attendance and progress are monitored through the FutureWater Moodle School. Each training module is tailored around different tools for gaining insight into salinity issues, improving salinity control, and enhancing agricultural production in Iraq:

  1. Geospatial mapping of climatic variables, soil salinity and irrigated areas using remote sensing and cloud computing.
  2. Soil-water-plant modeling to determine optimal irrigation water allocations to control water tables and soil salinity.
  3. Crop water productivity options to achieve real water savings in irrigated agriculture.

It is expected that the obtained knowledge and capacity in better mitigating soil and water salinization problems will be embedded into the organization(s) of the participants. This will contribute to a further increase in the agricultural productivity and food security in Iraq.

Geodata tools have been developing rapidly in the past years and are vastly adopted by researchers and increasingly by policy-makers. However, the is still great potential to increase the practical application of these tools in the agricultural sector, which is currently applied by a limited number of ‘pioneering’ farmers. The information that can be gained from geodata tools on irrigation management, pest and nutrient management, and crop selection, is a valuable asset for farmers. Key players for providing such information to the farmers are the extensions officers. This project aims at training extension officers in the use of these geodata tools. The beneficiaries in Egypt are: Tamkeen for Advanced Agriculture, FAODA, IDAM, Bio-Oasis, and LEPECHA. The selected participants will receive a training programme which consists firstly of several session on the background and theory of the geodata tools, provided through our online teaching platform (futurewater.moodle.school). Starting from May (2021) field schools will be set up to use the geodata tools for decision-making in these demonstration plots. In addition, modules are taught on the quality of the data, and profitability of such tools. Altogether, a group of carefully selected participants will receive training on these innovative tools and create a bridge to providing this information to farmers specifically the smallholder farmers.