Over the last decades, efficient water resources management has been an important element of EU’s water policies, a topic that is addressed with renewed attention in the revised 2021 EU Adaptation Strategy, which lists the need for a knowledge-based approach towards water-saving technologies and instruments such as efficient water resources allocation. The IPCC special report on oceans and the cryosphere in a changing climate (2019) highlights the combination of water governance and climate risks as potential reasons for tension over scarce water resources within and across borders, notably competing demands between hydropower and irrigation, in transboundary glacier- and snow-fed river basins in Central Asia.

WE-ACT’s innovative approach consists of two complementary innovation actions: the first is the development of a data chain for a reliable water information system, which in turn enables the second, namely design and roll-out of a decision support system for water allocation. The data chain for the reliable water information system consists of real-time in-situ hydrometeorological and glaciological monitoring technology, modelling of the water system (including water supply and demand modelling and water footprint assessments) and glacier mass balance, data warehouse technology and machine learning. The roll-out of the DSS for climate-risk informed water allocation consists of stakeholder and institutional analyses, water valuation methods, the setup of the water information system to allow for a user-friendly interface, development of water allocation use cases, and feedback on water use through national policy dialogues.

The work of FutureWater within the WE-ACT study will focus on estimating the water demand and water footprints of the different users and activities within the Syr Darya river basin. Therefore, the effects of water allocation on water footprints, unmet water demand and environmental flow violations will be evaluated using a set of hydrological models such as SPHY and Water Allocation models (WEAP). This will be done for both the status quo and future scenarios.

Eswatini’s development is at risk by natural drought hazards. Persistent drought is exacerbating the country’s existing challenges of food security and the ability to attain sustainable development. Therefore, FutureWater, Hydrologic, and Emanti Management joined forces to bring together technologies and complementary expertise to implement the GLOW service which includes: short-term and seasonal forecasts of water availability and demand, an alerting service when forecasted water demand is higher than water availability, and water distribution advisories to reduce impact and maximise water security for all water users.

The GLOW service will be piloted in the Maputo River and Mbuluzi River Basins where three-quarters of the population of Eswatini lives, which includes the Hawane dam that supplies water to Mbabane (Capital City of Eswatini) and which is the major water supply source for Maputo, a Delta city (1 million inhabitants) which suffers from water shortages. The main beneficiaries of this project are the Joint River Basin Authority (JBRAS-PB) and the 5 River Basin authorities, AraSul (Mozambique) and the Department of Water and Sanitation (South Africa).

The innovation of GLOW is bringing together proven and award-winning technologies of advanced earth observation, open data, high-performance computing, data-driven modelling, data science, machine learning, operations research, and stakeholder interaction. These technologies require minimum ground truth information, which makes them very scalable and applicable in poorly monitored environments throughout the world. The coherent combination of the technologies into one decision support service ensures the optimum division of water, basically distributing every drop of water to meet the demands of all interests present in large river catchments.

Currently, farmers rely on weather forecasts and advisories that are either general for a given, often wide, region of interest, or highly customized to the farmers’ needs (e.g. by combining large scale atmospheric variables into synthetic parameters of interest). In both cases, such forecasts and advisories often don’t rely at all on observations collected at or around the target cultivated areas, or they are limited to traditional observations provided only by weather stations, without exploiting the full extent of measurements and observations available through European space-based assets (e.g. Galileo GNSS, Copernicus Sentinels) and ground-based radar data.

MAGDA objectives go beyond the state-of-the-art by aiming at developing a modular system that can be deployed by owners of large farms directly at their premises, continuously feeding observations to dedicated and tailored weather forecast and hydrological models, with results displayed by a dashboard and/or within a Farm Management System.

FutureWater is leading the irrigation advisory service of MAGDA, making use of hydrological modelling using SPHY (Spatial Processes in Hydrology). The output expected consists of an operational irrigation service to provide advice on when and how much to irrigate at certain moments during the cropping season, using as input data improved weather forecasts.

During this task, the SPHY water balance model will be setup for three selected demonstrator farms in Romania, France and Italy. Finally, the irrigation advisory will be validated using performance indicators (e.g., water productivity, crop yield analysis, water use efficiency) using ground truth data (e.g., weather stations, moisture probes, crop biomass measurements)

Uzbekistan is highly sensitive to climate change which will cause changes in the water flows and distribution: water availability, use, reuse and return flows will be altered in many ways due to upstream changes in the high mountain regions, but also changes in water demand and use across the river basin. The resulting changes in intra-annual and seasonal variability will affect water security of Uzbekistan. Besides, climate change will increase extreme events which pose a risk to existing water resources infrastructure. An integrated climate adaptation approach is required to make the water resources system and the water users, including the environment, climate resilient.

This project will support the Ministry of Water Resources (MWR) of Uzbekistan in identifying key priorities for climate adaptation in the Amu Darya river basin and support the identification of investment areas within Amu Darya river basin. The work will be based on a basin-wide climate change risk assessment as well as on the government priorities with an explicit focus on reducing systemic vulnerability to climate change.

The project will undertake:

  • Climate change risk analysis and mapping on key water-related sectors, impacts on rural livelihoods, and critical water infrastructures.
  • Climate change adaptation strategic planning and identify barriers in scaling up adaptation measures at multiple scales with stakeholder consultation and capacity building approach.
  • Identification of priority measures and portfolios for integration into subproject development as well as for future adaptation investment in the Amu Darya river basin. The identification will cover shortlisting of potential investments, screening of economic feasibility, and potential funding opportunities.

FutureWater leads this assignment and develops the climate risk hotspot analysis, and coordinates the contribution of international and national experts, as well as the stakeholder consultation process.

The Lunyangwa Dam is the source of water supply for Mzuzu City, Ekwendi Town and surrounding areas. Currently, the yield of the dam is lower than the annual average daily water demand from the dam. A quick intervention for this problem is to raise the spillway of the Lunyangwe Dam.

In order to determine the height of the redesigned spillway, FutureWater conducted a hydrological study for the Lunyangwa Dam Catchment to determine flood extremes for several return periods. HEC-HMS was used for calculating the peak volumes and discharges. The input for the HEC-HMS model was retrieved using satellite-based datasets for rainfall and terrain. Furthermore, the flood routing was simulated with an elevation-storage curve. The output of this study will be used for the redesign of the spillway.

The Asian Development Bank (ADB) identified the need for a detailed Climate Risk and Adaptation (CRA) assessment for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. Therefore, this CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing This CRA assesses historic trends in relevant climate-related variables and analyses climate projections for the DKSHEP. Based on these projections, an assessment of the current and future climate risks and vulnerabilities relating to the proposed project activities will be outlined. Finally, recommendations will be presented for climate adaptation measures.

El proyecto de consultoría “Planificación y gestión estratégica integrada de los recursos hídricos para Ruanda” evaluará la disponibilidad de los recursos hídricos del país para el horizonte 2050 y su vulnerabilidad frente al cambio climático. En base a las previsiones de disponibilidad y riesgo, se realizará una priorización de las posibles opciones de inversión en infraestructura gris y verde que podrían ser integrados en la planificación hídrica nacional para alcanzara los objetivos de seguridad hídrica y de desarrollo sostenible (ODS 6).

La evaluación de recursos hídricos en un contexto de cambio climático se apoyará en herramientas de modelización hidrológica y asignación de recursos entre diferentes usos (modelo WEAP), y de contabilidad del agua a nivel de subcuenca. Paralelamente a la modelización se realizarán trabajos de campo orientados a la evaluación de los recursos hídricos subterráneos. Los mecanismos de asignación de recursos se cuantificarán bajo diferentes escenarios de uso incorporando las visiones y demandas de las partes interesadas.

Tras la evaluación de recursos y demandas-asignación, se cuantificará el potencial existente para incrementar la capacidad de almacenamiento y regulación de agua mediante la inclusión de infraestructura gris (embalses) y verde (Soluciones basadas en la Naturaleza). La evaluación del potencial y priorización de las soluciones planteadas se apoyará en visitas de campo y un análisis de viabilidad y DAFO las opciones candidatas. Para las opciones finalmente seleccionadas se desarrollarán fichas descriptivas de carácter conceptual para su integración en los instrumentos de planificación.

Por último, y en base a los resultados obtenidos en las tareas interiores, el trabajo de consultoría apoyará la revisión de la política nacional de gestión y planificación de recursos hídricos mediante la definición de nuevas declaraciones y políticas que ayuden a alcanzar los objetivos NST1 y Visión 2050.

The Swiss Agency for Development and Cooperation’s (SDCs) Global Programme Climate Change and Environment (GP CCE) India is supporting the operationalization of climate change adaptation actions in the mountain states of Uttarakhand, Sikkim and Himachal Pradesh through the phase two of the “Strengthening State Strategies for Climate Action” (3SCA) project that was launched in 2020. The second phase of 3SCA (2020-23), known as the Strengthening Climate Change Adaptation in Himalayas (SCA-Himalayas), while building on the experience and achievements of Phase 1, aims to showcase mountain ecosystem appropriate scalable approaches for climate resilience in water and disaster risk management sectors; using these efforts to enhance the capacities of the institutions across the Indian Himalayan Region (IHR) to plan, implement and mainstream adaptation actions into their programmes and policy frameworks; and disseminating the experiences and lessons at the regional and global level.

Within this programme, SDC has granted a project to FutureWater, together with Utrecht University, The Energy and Resources Institute (TERI), the University of Geneva and a few individual experts. The activities in this project focus on the development and application of climate responsive models and approaches for integrated water resources management (IWRM) for a selected glacier-fed sub-basin system in Uttarakhand and that at the same will find place in relevant policy frameworks paving way for their replication across IHR and other mountainous regions. This will allow the policy makers from the mountain states in India to manage the available water resources in an efficient and effective manner, benefiting the populations depending on these resources.

The combination of future climate change and socio-economic development poses great challenges for water security in areas depending on mountain water (Immerzeel et al., 2019). Climate change affects Asia’s high mountain water supply by its impact on the cryosphere. Changes in glacier ice storage, snow dynamics, evaporation rates lead to changes in runoff composition, overall water availability, seasonal shifts in hydrographs, and increases in extremely high and low flows (Huss and Hock, 2018; Lutz et al., 2014a). On the other and, downstream water demand in South Asia increases rapidly under population growth and increasing welfare boosting the demand for and electricity generation through hydropower. To address and adapt to these challenges integrated water resource management (IWRM) approaches and decision support systems (DSS) tailored to glacier- and snow-fed subbasins are required.

To fulfil the mandate outlined by SDC a framework is presented for IWRM and DSS for Himalayan subbasins consisting of three integrated platforms. (i) A modelling and decision support platform built around a multi-scale modelling framework for glacier and snow fed subbasins, based on state-of-the art and “easy to use” modelling technology. (ii) A stakeholder engagement platform to consult key stakeholders, identify key IWRM issues and co-design a new IWRM plan for Bhagirathi subbasin. (iii) A capacity building platform with on-site training and e-learning modules for the key project components: glacio-hydrological modelling, IWRM and DSS, to ensure the sustainability of the approach and pave the way for upscaling to other subbasins in the Indian Himalayan Region.

The three platforms are designed designed to be flexible, integrated and interactive. Moreover they align with the three outcomes of the project, thus contributing to: develop and validate an integrated climate resilient water resource management approach (Outcome 1); increase technical and institutional capacity in the fields of hydrological modelling, IWRM and DSS (Outcome 2); support the embedding of the IWRM approach tailored to glacier-fed Indian Himalayan subbasins in policies, and provide generic outputs and guidelines to facilitate upscaling to other subbasins in the Indian Himalayan Region (Outcome 3).

The modelling and decision support platform is designed for operation under the data scarce conditions faced in Himalayan catchments, and yields reliable outputs and projections. The modelling toolset covers the Bhagirathi watershed (Figure below) and consists of 3 hydrological models: (i) a high resolution glacio-hydrological model for the Dokriani glacier catchment (SPHY-Dokriani). Key parameters derived with this model are upscaled to (ii) a distributed glacio-hydrological model that covers the Bhagirathi subbasin (SPHYBhagirathi). Outputs of this model feed into (iii) a water allocation model that overlays the SPHY-Bhagirathi model in the downstream parts of the basin, where water demands are located (WEAPPODIUMSIM Bhagirathi). This modelling toolset is forced with downscaled climate change projections and socio-economic projections to simulate future changes in water supply and demand in the subbasin. On the basis of stakeholder inputs, adaptation options are identified and implemented in the water allocation model for scenario analysis. Thus, socio-economic projections and adaptation options are co-designed with the stakeholders to ensure maximum applicability, and are tailored to the requirements for formulation of the new IWRM plan. The outputs of the modelling toolset feed into the Decision Support System, where they are presented in such a way that they can truly support decision making in this subbasin. Results of the modelling, decision support and stakeholder engagement platforms jointly support the co-design of an IWRM plan for the subbasin. Capacity in glacio-hydrological modelling, IWRM and the use of DSS is built through a combination of on-site training and e-learning; replicable training modules are developed for glacio-hydrological modelling, IWRM and DSS in general and for this particular approach to support implementation and sustainability.

Overview of the Bhagirathi sub-basin. The inset on the right shows the Dokriani glacier watershed

The objectives of this climate risk assessment for the Li River in China is to assess current flood risk and future flood risk in the Li river basin in China. With an average of 1800 mm annual total rainfall, floods are severe and frequent in the region. Additionally to rainfall, severe floods in are often related to discharges from upstream reservoirs

Given the fact that this area is data scarce, global datasets with climatic data (ERA5-Land), soil parameters (HiHydroSoil) and land cover (Copernicus) were used to feed a hydrological HEC-HMS model to calculate the discharge for the extreme event of June 2020. Based on measured water levels and discharge, it was possible to develop rating curves and with these rating curves, it was possible to estimate water levels in the river for current (validation) and future conditions. This analysis served as input for the full climate risk assessment,  in which possible interventions were proposed to reduce flood risk in the future.

Water Funds are a well-established model for facilitating collective action to address water security challenges through the implementation of nature-based solutions (NBS) as a complement for more traditional so-called ‘grey’ infrastructure such as pipelines and treatment plants. This assignment represents the first of many engagements in which FutureWater are employed through an umbrella agreement with the Nature for Water Facility. Via this agreement, FutureWater staff can be assigned as technical experts to help develop and direct the implementation of Water Funds across the world.

The objectives of the Norfolk Water Fund is to secure good quality, long-term water resources for all water users, while protecting the environment and showcasing the county as an international exemplar for collaborative water management. The programme seeks to demonstrate how cross-sector, integrated water management and can deliver multiple benefits and help achieve the county’s net zero targets. FutureWater’s role to date has included: developing a methodology to spatially characterise water security challenges across Norfolk; providing mapping and content inputs to a pre-feasibility report on the potential for NbS to deliver against water-related objectives; delivering a portal to show delivery of NbS projects; helping coordinate a stakeholder engagement event; and more recently, the development of reference material for a call for projects.