The Lunyangwa Dam is the source of water supply for Mzuzu City, Ekwendi Town and surrounding areas. Currently, the yield of the dam is lower than the annual average daily water demand from the dam. A quick intervention for this problem is to raise the spillway of the Lunyangwe Dam.

In order to determine the height of the redesigned spillway, FutureWater conducted a hydrological study for the Lunyangwa Dam Catchment to determine flood extremes for several return periods. HEC-HMS was used for calculating the peak volumes and discharges. The input for the HEC-HMS model was retrieved using satellite-based datasets for rainfall and terrain. Furthermore, the flood routing was simulated with an elevation-storage curve. The output of this study will be used for the redesign of the spillway.

The Asian Development Bank (ADB) identified the need for a detailed Climate Risk and Adaptation (CRA) assessment for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. Therefore, this CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing This CRA assesses historic trends in relevant climate-related variables and analyses climate projections for the DKSHEP. Based on these projections, an assessment of the current and future climate risks and vulnerabilities relating to the proposed project activities will be outlined. Finally, recommendations will be presented for climate adaptation measures.

El proyecto de consultoría “Planificación y gestión estratégica integrada de los recursos hídricos para Ruanda” evaluará la disponibilidad de los recursos hídricos del país para el horizonte 2050 y su vulnerabilidad frente al cambio climático. En base a las previsiones de disponibilidad y riesgo, se realizará una priorización de las posibles opciones de inversión en infraestructura gris y verde que podrían ser integrados en la planificación hídrica nacional para alcanzara los objetivos de seguridad hídrica y de desarrollo sostenible (ODS 6).

La evaluación de recursos hídricos en un contexto de cambio climático se apoyará en herramientas de modelización hidrológica y asignación de recursos entre diferentes usos (modelo WEAP), y de contabilidad del agua a nivel de subcuenca. Paralelamente a la modelización se realizarán trabajos de campo orientados a la evaluación de los recursos hídricos subterráneos. Los mecanismos de asignación de recursos se cuantificarán bajo diferentes escenarios de uso incorporando las visiones y demandas de las partes interesadas.

Tras la evaluación de recursos y demandas-asignación, se cuantificará el potencial existente para incrementar la capacidad de almacenamiento y regulación de agua mediante la inclusión de infraestructura gris (embalses) y verde (Soluciones basadas en la Naturaleza). La evaluación del potencial y priorización de las soluciones planteadas se apoyará en visitas de campo y un análisis de viabilidad y DAFO las opciones candidatas. Para las opciones finalmente seleccionadas se desarrollarán fichas descriptivas de carácter conceptual para su integración en los instrumentos de planificación.

Por último, y en base a los resultados obtenidos en las tareas interiores, el trabajo de consultoría apoyará la revisión de la política nacional de gestión y planificación de recursos hídricos mediante la definición de nuevas declaraciones y políticas que ayuden a alcanzar los objetivos NST1 y Visión 2050.

The Swiss Agency for Development and Cooperation’s (SDCs) Global Programme Climate Change and Environment (GP CCE) India is supporting the operationalization of climate change adaptation actions in the mountain states of Uttarakhand, Sikkim and Himachal Pradesh through the phase two of the “Strengthening State Strategies for Climate Action” (3SCA) project that was launched in 2020. The second phase of 3SCA (2020-23), known as the Strengthening Climate Change Adaptation in Himalayas (SCA-Himalayas), while building on the experience and achievements of Phase 1, aims to showcase mountain ecosystem appropriate scalable approaches for climate resilience in water and disaster risk management sectors; using these efforts to enhance the capacities of the institutions across the Indian Himalayan Region (IHR) to plan, implement and mainstream adaptation actions into their programmes and policy frameworks; and disseminating the experiences and lessons at the regional and global level.

Within this programme, SDC has granted a project to FutureWater, together with Utrecht University, The Energy and Resources Institute (TERI), the University of Geneva and a few individual experts. The activities in this project focus on the development and application of climate responsive models and approaches for integrated water resources management (IWRM) for a selected glacier-fed sub-basin system in Uttarakhand and that at the same will find place in relevant policy frameworks paving way for their replication across IHR and other mountainous regions. This will allow the policy makers from the mountain states in India to manage the available water resources in an efficient and effective manner, benefiting the populations depending on these resources.

The combination of future climate change and socio-economic development poses great challenges for water security in areas depending on mountain water (Immerzeel et al., 2019). Climate change affects Asia’s high mountain water supply by its impact on the cryosphere. Changes in glacier ice storage, snow dynamics, evaporation rates lead to changes in runoff composition, overall water availability, seasonal shifts in hydrographs, and increases in extremely high and low flows (Huss and Hock, 2018; Lutz et al., 2014a). On the other and, downstream water demand in South Asia increases rapidly under population growth and increasing welfare boosting the demand for and electricity generation through hydropower. To address and adapt to these challenges integrated water resource management (IWRM) approaches and decision support systems (DSS) tailored to glacier- and snow-fed subbasins are required.

To fulfil the mandate outlined by SDC a framework is presented for IWRM and DSS for Himalayan subbasins consisting of three integrated platforms. (i) A modelling and decision support platform built around a multi-scale modelling framework for glacier and snow fed subbasins, based on state-of-the art and “easy to use” modelling technology. (ii) A stakeholder engagement platform to consult key stakeholders, identify key IWRM issues and co-design a new IWRM plan for Bhagirathi subbasin. (iii) A capacity building platform with on-site training and e-learning modules for the key project components: glacio-hydrological modelling, IWRM and DSS, to ensure the sustainability of the approach and pave the way for upscaling to other subbasins in the Indian Himalayan Region.

The three platforms are designed designed to be flexible, integrated and interactive. Moreover they align with the three outcomes of the project, thus contributing to: develop and validate an integrated climate resilient water resource management approach (Outcome 1); increase technical and institutional capacity in the fields of hydrological modelling, IWRM and DSS (Outcome 2); support the embedding of the IWRM approach tailored to glacier-fed Indian Himalayan subbasins in policies, and provide generic outputs and guidelines to facilitate upscaling to other subbasins in the Indian Himalayan Region (Outcome 3).

The modelling and decision support platform is designed for operation under the data scarce conditions faced in Himalayan catchments, and yields reliable outputs and projections. The modelling toolset covers the Bhagirathi watershed (Figure below) and consists of 3 hydrological models: (i) a high resolution glacio-hydrological model for the Dokriani glacier catchment (SPHY-Dokriani). Key parameters derived with this model are upscaled to (ii) a distributed glacio-hydrological model that covers the Bhagirathi subbasin (SPHYBhagirathi). Outputs of this model feed into (iii) a water allocation model that overlays the SPHY-Bhagirathi model in the downstream parts of the basin, where water demands are located (WEAPPODIUMSIM Bhagirathi). This modelling toolset is forced with downscaled climate change projections and socio-economic projections to simulate future changes in water supply and demand in the subbasin. On the basis of stakeholder inputs, adaptation options are identified and implemented in the water allocation model for scenario analysis. Thus, socio-economic projections and adaptation options are co-designed with the stakeholders to ensure maximum applicability, and are tailored to the requirements for formulation of the new IWRM plan. The outputs of the modelling toolset feed into the Decision Support System, where they are presented in such a way that they can truly support decision making in this subbasin. Results of the modelling, decision support and stakeholder engagement platforms jointly support the co-design of an IWRM plan for the subbasin. Capacity in glacio-hydrological modelling, IWRM and the use of DSS is built through a combination of on-site training and e-learning; replicable training modules are developed for glacio-hydrological modelling, IWRM and DSS in general and for this particular approach to support implementation and sustainability.

Overview of the Bhagirathi sub-basin. The inset on the right shows the Dokriani glacier watershed

The objectives of this climate risk assessment for the Li River in China is to assess current flood risk and future flood risk in the Li river basin in China. With an average of 1800 mm annual total rainfall, floods are severe and frequent in the region. Additionally to rainfall, severe floods in are often related to discharges from upstream reservoirs

Given the fact that this area is data scarce, global datasets with climatic data (ERA5-Land), soil parameters (HiHydroSoil) and land cover (Copernicus) were used to feed a hydrological HEC-HMS model to calculate the discharge for the extreme event of June 2020. Based on measured water levels and discharge, it was possible to develop rating curves and with these rating curves, it was possible to estimate water levels in the river for current (validation) and future conditions. This analysis served as input for the full climate risk assessment,  in which possible interventions were proposed to reduce flood risk in the future.

The objectives of the Norfolk Water Fund is to secure good quality, long-term water resources for all water users, while protecting the environment and showcasing the county as an international exemplar for collaborative water management. The programme seeks to demonstrate how cross-sector, integrated water management and can deliver multiple benefits and help achieve the county’s net zero targets.

Water Funds are a well-established model for facilitating collective action to address water security challenges through the implementation of nature-based solutions (NBS) as a complement for more traditional so-called ‘grey’ infrastructure such as pipelines and treatment plants. Norfolk is one of two European pilots selected for Water Funds by The Nature Conservancy (TNC), to add to their global portfolio of Water Funds.

To deliver this programme, a variety of technical activities are required. These include assessing Water Security Challenges in the county, identifying the most relevant NBS to the context, and prioritising the most effective locations and strategies for their implementation. FutureWater will support these technical activities with NBS and water resources expertise alongside coordinating technical partners.

This tailor-made training aims to build capacity in using tools to support climate-smart irrigation strategies to improve salinity control and enhance agricultural production. The training provides participants with relevant hands-on experience and cutting-edge knowledge on innovative solutions in earth observation technologies and apply this to assess measures for increasing water efficiency in agriculture, increase production and achieve water and climate-smart agriculture.

The training programme will consist of two e-learning training periods, that are separated by a 3-week period of regular on-distance support. The main e-learning training will take place over a 6-week period and is structured around 3 training modules that are divided into several training sessions. These training sessions are comprised of plenary video conferences and include assignments that can be worked on pairwise of individually. Attendance and progress are monitored through the FutureWater Moodle School. Each training module is tailored around different tools for gaining insight into salinity issues, improving salinity control, and enhancing agricultural production in Iraq:

  1. Geospatial mapping of climatic variables, soil salinity and irrigated areas using remote sensing and cloud computing.
  2. Soil-water-plant modeling to determine optimal irrigation water allocations to control water tables and soil salinity.
  3. Crop water productivity options to achieve real water savings in irrigated agriculture.

It is expected that the obtained knowledge and capacity in better mitigating soil and water salinization problems will be embedded into the organization(s) of the participants. This will contribute to a further increase in the agricultural productivity and food security in Iraq.

«Gabon is a rapidly developing country that contains substantial amount of intact natural areas and biodiversity, and large untapped natural resource stocks, placing the country at the forefront of a green economic development opportunities. TNC supports the government in preserving Hydrologic Ecosystem Services which are essential to include into development projects as for example hydropower.

This study will assess these services for the Komo basin where certain pressure already exists due to forestry operations and planned hydropower. It will evaluate various management scenarios which may improve and sustain hydrological flow conditions and hydropower options. The analysis will help the government in implementing an integrated water resources management (IWRM) approach in this basin.

FutureWater will deliver this study through hydrological modeling and scenario analysis to assess how hydrological ecosystem services provision in the Komo basin can be improved by a series of potential alternative scenarios based.»

El Fondo del Agua de Mombasa (MWF) aspira a asegurar y mejorar la cantidad y calidad del suministro de agua de la ciudad mediante instrumentos de inversión orientados a la protección de las fuentes de suministro y la conservación de las cuencas hidrográficas de las que dependen. Se ha constatado que la infraestructura actual de suministro de agua, que descansa en la explotación de manantiales y aguas subterráneas, es insuficiente para satisfacer las crecientes demandas de la ciudad. Para aumentar la seguridad hídrica, este proyecto evalúa la efectividad y viabilidad asociada a la construcción de la represa de Mwache.

El estudio de diseño tiene como objetivo:

  • Evaluar los beneficios biofísicos, financieros, económicos y socioeconómicos del MWF; y
  • Identificar los posibles modelos de gobernanza y financiación para establecer el MWF

En este proyecto, FutureWater esta encargado de realizar el análisis biofísico de este estudio. Su objetivo es cuantificar las actividades realizadas en el ámbito de la cuenca con las posibles mejoras en la seguridad hídrica. Mediante la aplicación de técnicas de modelización hidrológica y erosión de sedimentos se simulan los efectos sobre la cantidad y calidad del agua que se derivan de la combinación de diferentes actuaciones y soluciones (principalmente basadas en la naturaleza). El modelo también permite proyectar los riesgos de escasez de agua derivados de cambios en la demanda de agua. Las resultados de la modelización hidrológica se utilizan en un análisis económico coste-beneficio de los diferentes escenarios de actuación. El estudio de caso empresarial debería permitir la creación de otro Fondo de Agua exitoso en el África subsahariana promovido por The Nature Conservancy.

The purpose of these calculations was to provide a definite answer about the usefulness and necessity of the proposed storm water retention areas that were seen as necessary in 2009. Various scenario calculations were performed using a Sobek model in which water levels and discharges were compared under the current and future climate and with and without integration of the storm water retention areas.

The activities in this project included:

  • Testing of discharge and water levels at critical locations for the climate scenario at different recurrence times (flood risk assessment using climate scenario),
  • Comparison to the results of the flood risk assessment using historical climate data,
  • Integration of storm water retention areas in the Sobek model and analysis of their impact on water levels, discharge  at critical locations (usefulness and necessity for storm water retention areas, answer to LBW),
  • An initial estimate of critical locations along specific flood defense barriers for the different scenarios (high resolution comparison of water levels and defenses barrier heights) and
  • A comparison of the results with a number of previously conducted studies.

During the project, the flood risk assessment method, which was developed by Arcadis in 2020, was (further) automated, so that the method can be applied more quickly and for other comparable projects within Vechtstromen Water Board. Based on the results of the calculations, clear advice could be given on the usefulness and necessity of the proposed storm water retention areas as they were proposed in 2009.

More information about the method for standardizing regional flooding that is used by the Vechtstromen Water Board can be found on the following website (in Dutch):